Discrete Mathematics

 Share more and more And comment for help




Only Mathematics syllabus:          Click Here 


Important Books and the internet notes :

Download (35 MB)       Click Here   

College Book: SPECTRUM(4TH - Sem)







Our Book Pdf's


The book introduction and Syllabus:      Download


Module 1: 


Section 1 (Set Theory)                                           Download




Section 2 (Functions)                                  Download




Section 3 (Functions)                                   Download





Section 4 (Countable And Uncountable Sets)             Download






Section 5(Principles of  mathematical induction)         Download



Module 2:







1 Permutation And Combinations                   Download





2 Pigeonhole Principle                            Download







The Inclusion-Exclusion Principle           Download


Module 3:





1 Logic and propositional Calculus                       Download

Module 4:




1 Algebraic Structures And Morphism                Download





2 Algebraic Structure With Two Binary Operations, Rings, integral Domain And Fields                                               Download







3 Boolean Algebra                                                  Download
    


Module 5:




1 Graph Theory                       Download          








2 Trees                                      Download


Download Complete Book:                 Download(250 MB)


ASSIGNMENT 1:                                    Download

ASSIGNMENT 1 Solution:                     Download       


Assignment No. 1

 

Subject and Subject code: Discrete Mathematics (BTCS 401-18)                     Semester: 4th

 

The date on which the assignment was given: 24 /02/2021              Date of submission of assignment:02/03/2021 Total Marks:10

Course Outcomes

CO1

To be able to express logical sentence in terms of predicates, quantifiers, and logical

connectives

CO2

To derive the solution for a given problem using deductive logic and prove the solution based on logical inference

CO3

For a given a mathematical problem, classify its algebraic structure

CO4

To evaluate Boolean functions and simplify expressions using the properties of Boolean algebra

CO5

To develop the given problem as graph networks and solve it with techniques of graph theory

 

Sr.

No.

 

Assignment related to COs

 

Marks(10)

Relevance to

CO No.

Q1.

(a)  State and prove De Morgan’s Law.

(b)  Prove that if P, Q, R, S are arbitrary sets, then (P  Q) × (R  S) = (P ´ R)  (Q ´ S)

(c)  Let A, B, C are any sets, such that A È = A ÈC and A Ç B = A ÇC then show that B = C

1+1+1

CO1

Q2.

How many integers between 1 and 300 (inclusive) are:

(i)  Divisible by at least one of 3, 5, 7?

(ii)  Divisible by 3 and 5, not by 7?

(iii)  Divisible by 5 but neither by 3 nor by 7?

1+1+1

CO3

Q3.

(a) Define Equivalence Relation with example. (b)(i) Prove that R is symmetric iff R-1 =R.

(ii) If R is an equivalence relation on a set A, then so R-1.

(c) Let R be a relation defined on the set of real nos. a is related to b if

a  b where a, b are real numbers. Then R is a Partial order relation.

1+1+1+1

CO1

 

Assignment 1 Solution:                                   Download





SYLLABUS (Detailed Contents):

Module 1: 

Sets, Relation, and Function: Operations and Laws of Sets, Cartesian Products, Binary
Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum, and Product of
Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and
infinite Sets, Countable and uncountable sets, Cantor's diagonal argument, and The Power Set
theorem, Schroeder-Bernstein theorem.

Principles of Mathematical Induction: The Well-Ordering Principle, Recursive definition,
The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm,
The Fundamental Theorem of Arithmetic. 

Module 2: 

Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation, and combination.

Module 3: 

Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and
Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of
Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods
and Strategies, Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof of
Necessity and Sufficiency. 

Module 4: 

Graphs and Trees:  Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub
Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and
Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition
properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Bi-
connected component and Articulation Points, Shortest distances.












Comments

Popular posts from this blog

AMCAT

all question papers second (2) semester

Operating Systems Lab