Physics

 Share more and more And comment for help




2019 exams:

Premst 1                           Download       

Premst 2                           Not Organised      

Mst 1                                Download   

Mst 2                                Download

Final exam                       Download         


2020 exams:


Premst 1                           Not Organised       

Premst 2                           Not Organised      

Mst 1                                Download   

Mst 2                               

Final exam                              


Detailed Syllabus: 


PART-A 


Module 1: 

Electronic materials  
Free electron theory, Density of states and energy band diagrams, Kronig-Penny model (to introduce the origin 
of the band gap), Energy bands in solids, E-k diagram, Direct and indirect band gaps, Types of electronic 
materials: metals, semiconductors, and insulators, Effective mass of electron and hole. 

 

Module 2: 

Semiconductors  Intrinsic and extrinsic semiconductors, Fermi level and Dependence of Fermi level on the carrier-
concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, 
Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky)  


PART-B :

Module 3: 

Optoelectronic devices Radiative and non-radiative recombination mechanisms in semiconductors, Semiconductor materials of 
interest for optoelectronic devices. 
 
The semiconductor light-emitting diodes (LEDs): light-emitting materials, device structure, characteristics, 
Fiber-optic communication,  
Semiconductor lasers: Lasers, Optical transitions in bulk semiconductors: absorption, spontaneous 
emission, and stimulated emission, Semiconductor laser: population inversion at a junction, structure, 
materials, device characteristics, vertical-cavity surface-emitting lasers (VECSEL), Tunable 
semiconductor lasers.   
Photodetectors: Types of semiconductor photodetectors -p-n junction, PIN, and Avalanche-and their 
structure, materials, working principle, and characteristics, Noise limits on performance; Solar cells.  
Introduction to Low-dimensional optoelectronic devices viz. Quantum-well, -wire, and -dot-based LEDs, 
lasers, and photodetectors. 

 

Module 4: 

Measurements: Four-point probe and vander Pauw measurements for resistivity, and hall 
mobility and electronic energy band gap; Hot-point probe measurement, capacitance-voltage 
measurements, parameter extraction from diode I-V characteristics, optical band gap by UV-Vis 
spectroscopy, absorption/transmission. 


Books:


































Download complete physics book (Semiconductorr_Physics_by_Karamjit_Singh_Dhaliwal)(100 MB)


Other Suggested Books:

Semiconductor.Devices_Physics.Technology_Sze.2ndEd_Wiley_2002


Wiley - Physics of Semiconductor Devices - By EasyEngineering.net




Assignments:

Assignment 1 Coe ( October 2020)                     Click here

(( Chandigarh Engineering College Landran, Mohali

Department of Applied Sciences


Subject and Subject code: Semiconductor Physics (BTPH104-18) Semester: 1st

 

Date on which assignment was given: 21th Oct. 2020 Date of submission of assignment: 30th Oct. 2020

 

Course Outcomes

CO1: Understand and explain the fundamental principles and properties of electronic materials and semiconductors.

CO2: Understand and describe the interaction of light with semiconductors in terms of fermi golden rule.

CO3: Understand and describe the impact of solid-state device capabilities and limitations on electronic circuit performance.

CO4: Understand the design, fabrication, and characterization techniques of engineered semiconductor materials.

CO5: Develop the basic tools with which they can study and test the newly developed devices and other semiconductor applications.

 

Assignment related to COs

Marks

Relevance to

CO No.

 

 

Q1.

(a) What are the shortcomings of classical free electron theory and how the quantum theory of free electron modifies the assumptions of

classical free electron theory?

 

2 marks

 

 

CO-1

(b) Find the temperature at which there is 1%

probability that a state with energy 0.5 eV above Fermi energy can be occupied.

 

2 marks

 

Q2.

Describe the expression of wave function and the energy values for electron confined to a line of

length ‘L’ inside a box.

 

3 marks

 

CO-1

 

Q3.

Derive an expression for density of states in a semiconductor in 3D. Hence show that average

K.E of a three dimensional free electron gas at 0K is E0= (3/5) EF.

 

3 marks

 

CO-1

 ))



Assignment 2 Coe ( January 2021)                     Click here

((

Chandigarh Engineering College Landran, Mohali

Department of Applied Sciences

 

Assignment No. 2                                                                                            Max Marks: 10

 

Subject and Subject code: Semiconductor Physics (BTPH104-18) Semester: 1st

 

Date on which assignment given: 06th Jan. 2021 Date of submission of assignment: 20th Jan. 2021

 

Course Outcomes

CO1: Understand and explain the fundamental principles and properties of electronic materials and semiconductors.

CO2: Understand and describe the interaction of light with semiconductors in terms of fermi golden rule.

CO3: Understand and describe the impact of solid-state device capabilities and limitations on electronic circuit performance.

CO4: Understand the design, fabrication, and characterization techniques of engineered semiconductor materials.

CO5: Develop the basic tools with which they can study and test the newly developed devices and other semiconductor applications.

 

Assignment related to COs

Marks

Relevance to

CO No.

 

 

Q1.

(a) Explain the spontaneous and stimulated emission with the help of transition

diagrams.

 

2 marks

 

CO-2

(b) What do you mean by the Schottky and

Ohmic contacts?

2 marks

CO-5

 

Q2.

(a) Differentiate between drift and diffusion

current.

2 marks

CO-4

(b) What is the importance of Einstein

coefficient?

1 marks

CO-2

 

Q3.

Drive the expression for electric field and potential variation in p-n junction. Consequently calculate the depletion width and junction

capacitance.

 

3 marks

 

CO-4

 

))




Notes:

Semiconductor physics unit 1 complete:                                                   click here

Kp model:                                                                                                     Download

Ek diagram and brillouin Zones: Download 

Effective Mass of an electron:                                                     Download 

Effective Mass of an electron:                                                     Download

Direct and indirect bandgap, photon, phonon:                            Download

Intrinsic semicondutor:                                                                  Download

 ( Topics Covered 1. Hole concentration in valence band 2. The concentration of charge carrier in an intrinsic semiconductor. 3. Fermi level in an intrinsic semiconductor. 4. Fraction of electrons in CB )

 Question Bank for MST:                                                               Download

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         




                   











Comments